
The 8051 Assembly Language

Overview

 Assembler directives

 Data transfer instructions

 Addressing modes

 Data processing (arithmetic and logic)

 Program flow instructions

Instructions vs. Directives

 Assembler Directives

 Instructions for the ASSEMBLER

 NOT 8051 instructions

 Examples:
;cseg stands for “code segment”

cseg at 1000h ;address of next instruction

 is 1000h

GREEN_LED equ P1.6 ;symbol for Port 1, bit 6

Assembler Directives
 DATA
 Used to define a name for memory locations
SP DATA 0x81 ;special function registers

MY_VAL DATA 0x44 ;RAM location

 EQU
 Used to create symbols that can be used to

represent registers, numbers, and addresses
LIMIT EQU 2000

VALUE EQU LIMIT – 200 + 'A'

SERIAL EQU SBUF

COUNT EQU R5

MY_VAL EQU 0x44

Address

Registers, numbers, addresses

Data Transfer Instructions
MOV dest, source dest source

6 basic types:
MOV a, byte ;move byte to accumulator

MOV byte, a ;move accumulator to byte

MOV Rn, byte ;move byte to register of

 ;current bank

MOV direct, byte ;move byte to internal RAM

MOV @Rn, byte ;move byte to internal RAM

 ;with address contained in Rn

MOV DPTR, data16 ;move 16-bit data into data

 ;pointer

Other Data Transfer Instructions

 Stack instructions

PUSH byte ;increment stack pointer,

 ;move byte on stack

POP byte ;move from stack to byte,

 ;decrement stack pointer

 Exchange instructions

XCH a, byte ;exchange accumulator and

 ;byte

XCHD a, byte ;exchange low nibbles of

 ;accumulator and byte

Addressing Modes

Immediate Mode – specify data by its value

mov a, #0 ;put 0 in the accumulator

 a = 00000000

mov a, #0x11 ; put 11hex in the accumulator

 a = 00010001

mov a, #11 ; put 11 decimal in accumulator

 a = 00001011

mov a, #77h ; put 77 hex in accumulator

 a = 01110111

Addressing Modes

Direct Mode – specify data by its 8-bit address

mov a, 0x70 ; copy contents of RAM at 70h to a

mov 0xD0, a ; put contents of a into PSW

Addressing Modes

Register Addressing – either source or destination

is one of R0-R7

mov R0, a

mov a, R0

Play with the Register Banks

Addressing Modes
Register Indirect – the address of the source or

destination is specified in registers

Uses registers R0 or R1 for 8-bit address:
mov 0xD0, #0 ; use register bank 0

mov r0, #0x3C

mov @r0, #3 ; memory at 3C gets #3

 ; M[3C] 3

Uses DPTR register for 16-bit addresses:
mov dptr, #0x9000 ; dptr 9000h

mov a, @dptr ; a M[9000]

Note that 9000 is an address in external memory

Exercise: Use Register Indirect to

access upper RAM block

Learn about Include Files

Addressing Modes

 Register Indexed Mode – source or destination

address is the sum of the base address and the

accumulator.

 Base address can be DPTR or PC

mov dptr, #4000h

mov a, #5

movc a, @a + dptr ;a M[4005]

Addressing Modes

 Register Indexed Mode

 Base address can be DPTR or PC

Addr cseg at 0x1000h

1000 mov a, #5

1002 movc a, @a + PC ;a M[1008]

1003 nop

PC

Table Lookup

A and B Registers

 A and B are “accumulators” for arithmetic

instructions

 They can be accessed by direct mode as

special function registers:

 B – address 0F0h

 A – address 0E0h - use “ACC” for direct

mode

Address Modes
Stack-oriented data transfer – another form of

register indirect addressing, but using SP

mov sp, #0x40 ; Initialize SP

push 0x55 ; SP SP+1, M[SP] M[55]

 ; M[41] M[55]

pop b ; b M[55]

Note: can only specify RAM or SFRs (direct mode) to push or
pop. Therefore, to push/pop the accumulator, must use acc,
not a:

push acc

push a

Stacks

push
pop

stack

stack pointer

Go do the stack exercise…..

Address Modes

Exchange Instructions – two way data transfer

XCH a, 0x30 ; a M[30]

XCH a, R0 ; a R0

XCH a, @R0 ; a M[R0]

XCHD a, R0 ; exchange “digit”

R0[7..4] R0[3..0] a[7..4] a[3..0]

Only 4 bits exchanged

Address Modes
 Bit-Oriented Data Transfer – transfers between individual bits.

 SFRs with addresses ending in 0 or 8 are bit-addressable. (80, 88, 90, 98,
etc)

 Carry flag (C) (bit 7 in the PSW) is used as a single-bit accumulator

 RAM bits in addresses 20-2F are bit addressable

Examples of bit transfers of special function register bits:
 mov C, P0.0 ; C bit 0 of P0

Bit Addressable Memory
20h – 2Fh (16 locations X

8-bits = 128 bits)

7F 78

1A

10

0F 08

07 06 05 04 03 02 01 00

27

26

25

24

23

22

21

20

2F

2E

2D

2C

2B

2A

29

28

Bit addressing:

 mov C, 1Ah

 or

 mov C, 23h.2

SPRs that are Bit Addressable

SPRs with addresses

of multiples of 0 and

8 are bit

addressable.

Notice that all 4

parallel I/O ports are

bit addressable.

SFRs

Pink are

implemented in

enhanced

C8051F020

Address Register

0xF8 SPI0CN

0xF0 B

0xE8 ADC0CN

0xE0 ACC

0xD8 PCA0CN

0xD0 PSW

0xC8 T2CON

0xC0 SMB0CN

0xB8 IP

0xB0 P3

0xA8 IE

0xA0 P2

0x98 SCON

0x90 P1

0x88 TCON

0x80 P0

Go Access the Port Bits….

The 8051 Assembly Language

Part II

Use this template as a starting point for

future programs.

Program Template

Arithmetic Instructions

Logic Instructions

Data Processing Instructions

Arithmetic Instructions

 Add

 Subtract

 Increment

 Decrement

 Multiply

 Divide

 Decimal adjust

Arithmetic Instructions

Mnemonic Description

ADD A, byte add A to byte, put result in A

ADDC A, byte add with carry

SUBB A, byte subtract with borrow

INC A increment A

INC byte increment byte in memory

INC DPTR increment data pointer

DEC A decrement accumulator

DEC byte decrement byte

MUL AB multiply accumulator by b register

DIV AB divide accumulator by b register

DA A decimal adjust the accumulator

ADD Instructions
add a, byte ; a a + byte

addc a, byte ; a a + byte + C

These instructions affect 3 bits in PSW:

C = 1 if result of add is greater than FF

AC = 1 if there is a carry out of bit 3

OV = 1 if there is a carry out of bit 7, but not from bit 6,

or visa versa.

Instructions that Affect PSW bits

ADD Examples

mov a, #0x3F

add a, #0xD3

 What is the value of

the C, AC, OV flags

after the second

instruction is

executed? 0011 1111

 1101 0011

 0001 0010

 C = 1

AC = 1

OV = 0

Signed Addition and Overflow
 0111 1111 (positive 127)

 0111 0011 (positive 115)

 1111 0010 (overflow

cannot represent 242 in 8

bits 2’s complement)

 2’s complement:

0000 0000 00 0

…

0111 1111 7F 127

1000 0000 80 -128

…

1111 1111 FF -1

 1000 1111 (negative 113)

 1101 0011 (negative 45)

 0110 0010 (overflow)

 0011 1111 (positive)

 1101 0011 (negative)

 0001 0010 (never overflows)

Addition Example
; Computes Z = X + Y; Adds values at locations 0x78 and 0x79 and puts them in

location 0x7A

$INCLUDE (C8051F020.inc)

; EQUATES

;---

X equ 0x78

Y equ 0x79

Z equ 0x7A

; RESET and INTERRUPT VECTORS

;---

 cseg at 0

 ljmp Main

; CODE SEGMENT

;---

 cseg at 100h

Main: mov 0xFF, #0DEh ; Disable watchdog timer

 mov 0xFF, #0ADh

 mov a, X

 add a, Y

 mov Z, a

 nop

 end

The 16-bit ADD example…..

Subtract

SUBB A, byte subtract with borrow

Example:

SUBB A, #0x4F ; A A – 4F – C

Notice that there is no subtraction WITHOUT borrow. Therefore, if

a subtraction without borrow is desired, it is necessary to clear the C

flag.

Increment and Decrement

 The increment and decrement instructions do
NOT affect the C flag.

 Notice we can only INCREMENT the data
pointer, not decrement.

INC A increment A

INC byte increment byte in memory

INC DPTR increment data pointer

DEC A decrement accumulator

DEC byte decrement byte

Example: Increment 16-bit Word

 Assume 16-bit word in R3:R2

mov a, r2

add a, #1 ; use add rather than increment to affect C

mov r2, a

mov a, r3

addc a, #0 ; add C to most significant byte

mov r3, a

Multiply

When multiplying two 8-bit numbers, the size of the

maximum product is 16-bits

FF x FF = FE01

(255 x 255 = 65025)

MUL AB ; BA A * B

Note: B gets the HIGH byte, A gets the LOW byte

Go forth and multiply…

Division

Integer Division

DIV AB ; divide A by B

A Quotient(A/B), B Remainder(A/B)

OV - used to indicate a divide by zero condition.

C – set to zero

Decimal Adjust

DA a ; decimal adjust a

Used to facilitate BCD addition. Adds “6” to either high or

low nibble after an addition to create a valid BCD
number.

Example:
 mov a, #0x23

 mov b, #0x29

 add a, b ; a 23 + 29 = 4C (wanted 52)

 DA a ; a a + 6 = 52

Note: This instruction does NOT convert binary to BCD!

Bitwise logic operations (AND, OR, XOR, NOT)

Clear

Rotate

Swap

Logic instructions do NOT affect the flags in PSW

Logic Instructions

Bitwise Logic

ANL – AND

ORL – OR

XRL – eXclusive OR

CPL – Complement

Examples:
00001111

10101100 ANL

00001111

10101100 ORL

00001111

10101100 XRL

10101100 CPL

00001100

10101111

10100011

01010011

Address Modes with Logic

a, byte

 direct, reg. indirect, reg, immediate

byte, a

direct

byte, #constant

a ex: cpl a

ANL – AND

ORL – OR

XRL – eXclusive oR

CPL – Complement

Uses of Logic Instructions

 Force individual bits low, without affecting other

bits.

 anl PSW, #0xE7 ;PSW AND 11100111

 anl PSW, #11100111b ; can use “binary”

 Force individual bits high.

 orl PSW, #0x18 ;PSW OR 00011000

 Complement individual bits

 xrl P1, #0x40 ;P1 XRL 01000000

A bit part for you….

Other Logic Instructions

 CLR - clear

 RL – rotate left

 RLC – rotate left through Carry

 RR – rotate right

 RRC – rotate right through Carry

 SWAP – swap accumulator nibbles

CLR – Set all bits to 0

CLR A

CLR byte (direct mode)

CLR Ri (register mode)

CLR @Ri (register indirect mode)

Rotate

 Rotate instructions operate only on a

rl a

mov a, #0xF0 ; a 11110000

rl a ; a 11100001

Rotate through Carry

rrc a

mov a, #0A9h ; a A9

add a, #14h ; a BD (10111101), C0

rrc a ; a 01011110, C1

C

Swap
swap a

mov a, #72h

swap a ; a 27h

Bit Logic Operations
Some logic operations can be used with single

bit operands
ANL C, bit ANL C, /bit

ORL C, bit ORL C, /bit

CLR C

CLR bit

CPL C

CPL bit

SETB C

SETB bit

“bit” can be any of the bit-addressable RAM

locations or SFRs.

Rotate and Multiplication/Division

 Note that a shift left is the same as multiplying by

2, shift right is divide by 2

mov a, #3 ; A 00000011 (3)

clr C ; C 0

rlc a ; A 00000110 (6)

rlc a ; A 00001100 (12)

rrc a ; A 00000110 (6)

Shift/Multiply Example

 Program segment to multiply by 2 and add 1

 clr c

 rl a ;multiply by 2

 inc a ;and add one

Logical Operations Exercise – Part 2

Be Logical…..

Program Flow Control

 Unconditional jumps (“go to”)

 Conditional jumps

 Call and return

Unconditional Jumps
 SJMP <rel addr> ; Short jump, relative

address is 8-bit 2’s complement number, so jump can

be up to 127 locations forward, or 128 locations back.

 LJMP <address 16> ; Long jump

 AJMP <address 11> ; Absolute jump to

anywhere within 2K block of program memory

 JMP @A + DPTR ; Long indexed jump

Infinite Loops

Start: mov C, p3.7

 mov p1.6, C

 sjmp Start

Microcontroller application programs are almost always infinite loops!

Re-locatable Code

 cseg at 8000h

 mov C, p1.6

 mov p3.7, C

 ljmp 8000h

end

 cseg at 8000h

Start: mov C, p1.6

 mov p3.7, C

 sjmp Start

end

Re-locatable

Memory specific (NOT Re-locatable)

Conditional Jumps

These instructions cause a jump to occur only if a

condition is true. Otherwise, program execution

continues with the next instruction.

loop: mov a, P1

 jz loop ; if a=0, goto loop,

 ; else goto next

 ; instruction

 mov b, a

Conditional jumps
Mnemonic Description

JZ <rel addr> Jump if a = 0

JNZ <rel addr> Jump if a != 0

JC <rel addr> Jump if C = 1

JNC <rel addr> Jump if C != 1

JB <bit>, <rel addr> Jump if bit = 1

JNB <bit>,<rel addr> Jump if bit != 1

JBC <bit>, <rel addr> Jump if bit =1, clear bit

CJNE A, direct, <rel

addr>
Compare A and memory,

jump if not equal

Conditional Jumps for Branching
if condition is true

goto label

else

 goto next

instruction

jz led_off

setb C

mov P1.6, C

sjmp skipover

clr C

mov P1.6, C

mov A, P0

led_off:

skipover:

if a = 0 is true

send a 0 to LED

else

 send a 1 to LED

condition

true

false

label

More Conditional Jumps
Mnemonic Description

CJNE A, #data <rel addr> Compare A and data, jump if

not equal

CJNE Rn, #data <rel addr> Compare Rn and data, jump if

not equal

CJNE @Rn, #data <rel addr> Compare Rn and memory,

jump if not equal

DJNZ Rn, <rel addr> Decrement Rn and then jump

if not zero

DJNZ direct, <rel addr> Decrement memory and then

jump if not zero

Iterative Loops

For A = 0 to 4 do

{…}

 clr a

loop: ...

 inc a

 cjne a, #4, loop

For A = 4 to 0 do

{…}

 mov R0, #4

loop: ...

 ...

 djnz R0, loop

Fun with the LED

Branch and Jump

Call and Return

 Call is similar to a jump, but
 Call instruction pushes PC on stack before branching
 Allows RETURN back to main program

Absolute call
acall <address ll> ; stack PC

 ; PC address 11

Long call
lcall <address 16> ; stack PC

 ; PC address 16

Return

 Return is also similar to a jump, but

 Return instruction pops PC from stack to get

address to jump to

ret ; PC stack

Subroutines

 Main: ...

 acall sublabel

 ...

 ...

 sublabel:...

 ...

 ret
the subroutine

call to the subroutine

Initializing Stack Pointer
 The Stack Pointer (SP) is initialized to 0x07. (Same

address as R7)

 When using subroutines, the stack will be used to

store the PC, so it is very important to initialize the

stack pointer. Location 2F is often used.

mov SP, #0x2F

Subroutine - Example
$include (c8051f020.inc)

GREEN_LED equ P1.6

 cseg at 0

 ljmp Main

 cseg at 0x100

Main: mov WDTCN, #0DEh

 mov WDTCN, #0ADh

 orl P1MDOUT,#40h

 mov XBR2, #40h

 clr GREEN_LED

Again: acall Delay

 cpl GREEN_LED

 sjmp Again

Delay: mov R7, #02

Loop1: mov R6, #00h

Loop0: mov R5, #00h

 djnz R5, $

 djnz R6, Loop0

 djnz R7, Loop1

 ret

END

reset vector

main program

subroutine

Subroutine – another example
; Program to compute square root of value on Port 3 (bits 3-0) and

; output on Port 1.

$INCLUDE (C8051F020.inc)

 cseg at 0

 ljmp Main

Main: mov P3MDOUT, #0 ; Set open-drain mode

 mov P3, #0xFF ; Port 3 is an input

 mov P1MDOUT, #0xFF ; Port 1 is an output

 mov XBR2, #40h ; Enable crossbar

loop: mov a, P3

 anl a, #0x0F ; Clear bits 7..4 of A

 lcall sqrt

 mov P1, a

 sjmp loop

sqrt: inc a

 movc a, @a + PC

 ret

squares: db 0,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3

 end

reset vector

main program

subroutine

data

Why Subroutines?

 Subroutines allow us to have "structured"

assembly language programs.

 This is useful for breaking a large design into

manageable parts.

 It saves code space when subroutines can be

called many times in the same program.

Timeout for Subroutines....

Interrupts …

mov a, #2

mov b, #16

mul ab

mov R0, a

mov R1, b

mov a, #12

mov b, #20

mul ab

add a, R0

mov R0, a

mov a, R1

addc a, b

mov R1, a

end

P
ro

g
ram

 E
x
ecu

tio
n

interrupt
ISR: orl P1MDIN, #40h

 orl P1MDOUT,#40h

 setb P1.6

here: sjmp here

 cpl P1.6

 reti

return

Interrupt Sources

 Original 8051 has 5 sources of interrupts

 Timer 1 overflow

 Timer 2 overflow

 External Interrupt 0

 External Interrupt 1

 Serial Port events (buffer full, buffer empty, etc)

 Enhanced version has 22 sources

 More timers, programmable counter array, ADC,

more external interrupts, another serial port (UART)

Interrupt Process

If interrupt event occurs AND interrupt flag for

that event is enabled, AND interrupts are

enabled, then:

1. Current PC is pushed on stack.

2. Program execution continues at the

interrupt vector address for that interrupt.

3. When a RETI instruction is encountered,

the PC is popped from the stack and

program execution resumes where it left off.

Interrupt Priorities

 What if two interrupt sources interrupt at the same

time?

 The interrupt with the highest PRIORITY gets

serviced first.

 All interrupts have a default priority order. (see

page 117 of datasheet)

 Priority can also be set to “high” or “low”.

Interrupt SFRs

Global Interrupt Enable –

must be set to 1 for any

interrupt to be enabled

Interrupt enables for the 5 original 8051 interrupts:

Timer 2

 Serial (UART0)

 Timer 1

 External 1

 Timer 0

 External 0
1 = Enable

0 = Disable

Another Interrupt SFR

Comparator 1 rising edge

Comparator 1 falling edge

Comparator 0 rising edge

Comparator 0 falling edge

Program Counter Array

ADC0 Window Comparison

System Management Bus

SPI Interface

Another Interrupt SFR

Serial

(UART) 1

External 7

External 6

ADC 1

Timer 4

ADC 0

Timer 3

External

Clock

source

Valid

External Interrupts
 /INT0 (Interrupt 0) and /INT1 (Interrupt 1) are

external input pins.

 Interrupt 6 and Interrupt 7 use Port 3 pins 6 and
7:
INT 6 = P3.6

INT 7 = P3.7

These interrupts can be configured to be
 rising edge-triggered

 falling edge-triggered

External Interrupts

Interrupt flags:

0 = no falling edges

detected since bit cleared

1 = falling edge detected

Interrupt Edge Configuration:

0 = interrupt on falling edge

1 = interrupt on rising edge

Example Configuration

Configure Port 3, bit 7 (the pushbutton switch) to

interrupt when it goes low.

anl P3MDOUT, #0x7F ; Set P3.7 to be an input

setb P3.7

mov XBR2, #40h ; Enable crossbar switch

mov P3IF, #0 ; Interrupt on falling edge

mov EIE2, #020h ; Enable EX7 interrupt

mov IE #80h ; Enable global interrupts

Interrupt Vectors
Each interrupt has a specific place in code memory

(a vector) where program execution (interrupt
service routine) begins (p17).

Examples:

External Interrupt 0: 0x0003

Timer 0 overflow: 0x000B

External Interrupt 6: 0x0093

External Interrupt 7: 0x009B

Note that there are

only 8 memory

locations between

vectors.

Interrupt Vectors

To avoid overlapping Interrupt Service routines, it
is common to put JUMP instructions at the
vector address. This is similar to the reset
vector.

 cseg at 009B ; at EX7 vector

 ljmp EX7ISR

 cseg at 0x100 ; at Main program

Main: ... ; Main program

 ...

EX7ISR:... ; Interrupt service routine

 ... ; Can go after main program

 reti ; and subroutines.

Example Interrupt Service

Routine
; EX7 ISR to blink the LED 5 times.

; Modifies R0, R5-R7, bank 3.

;--

ISRBLK: push PSW ; save state of status word

 mov PSW, #18h ; select register bank 3

 mov R0, #10 ; initialize counter

Loop2: mov R7, #02h ; delay a while

Loop1: mov R6, #00h

Loop0: mov R5, #00h

 djnz R5, $

 djnz R6, Loop0

 djnz R7, Loop1

 cpl P1.6 ; complement LED value

 djnz R0, Loop2 ; go on then off 10 times

 pop PSW

 mov P3IF, #0 ; clear interrupt flag

 reti

Key Thinks for ISRs
 Put the ISR vector in the proper space using a

CSEG assembler directive and long jump

 Save any registers/locations that you use in the
routine (the stack is useful here)

 Clear the interrupt flag (unless it is cleared by
hardware)

 Don’t forget to restore any saved
registers/locations and to put the RETI at the end!

Assignment no.8

List out different Interrupts available in

8051 and describe their importance while

Programming.

