The 8051 Assembl

Overview

e Assembler directives

e Data transfer instructions

e Addressing modes

e Data processing (arithmetic and logic)
e Program flow instructions

Instructions vs. Directives

e Assembler Directives
e |[nstructions for the ASSEMBLER
e NOT 8051 instructions

e Examples:

;Ccseg stands for “code segment”

cseg at 1000h ;address of next instruction
1s 1000h

GREEN LED equ P1.6 ;symbol for Port 1, bit ©

Assembler Directives

 DATA
e Used to define a name for memory locations
SP DATA 0x81 ;special function registers

MY VAL DATA 0x44 ;RAM location

\ Address

e EQU
e Used to create symbols that can be used to
represent registers, numbers, and addresses
LIMIT EQU 2000
VALUE EQU LIMIT - 200 + 'A'
SERIAL EQU SBUF
COUNT EQU RD

MY VAL EQU 0x44 \

Registers, numbers, addresses

Data Transfer Instructions

MOV dest, source
6 basic types:

MOV
MOV
MOV

MOV
MOV

MOV

a, byte
byte, a
Rn, byte

direct, byte
@Rn, byte

DPTR, datalb6

dest € source

;ymove byte to accumulator
;ymove accumulator to byte
;ymove byte to register of
;current bank

;ymove byte to internal RAM

;ymove byte to 1nternal RAM
;with address contained in Rn

;move lo-bit data into data

;pointer

Other Data Transfer Instructions

e Stack instructions

PUSH byte ;lncrement stack poilinter,
;ymove byte on stack

POP byte;move from stack to byte,
;decrement stack pointer

e Exchange instructions
XCH a, byte ;exchange accumulator and
;byte
XCHD a, byte ;exchange low nibbles of
;yaccumulator and byte

Addressing Modes

Immediate Mode — specify data by its value

mov a, #0 ;put 0 in the accumulator
a = 00000000
mov a, #0x11 ; put llhex 1n the accumulator

a = 00010001
mov a, #11 ; put 11 decimal in accumulator

a = 00001011
mov a, #77h ; put 77 hex in accumulator

a = 01110111

Addressing Modes

Direct Mode —

mov a, 0x70

mov 0xDO, a

0xFF

0x80
O0x7F

0:x30
O0x2F

0:x20
Ox1F

0x00

specify data by its 8-bit address

; copy contents of RAM at 70h to a

; put contents of a into PSW

DATA MEMORY (RAM)
INTEEMNAL DATA ADDRESS SPACE
Upper 128 RAM Special Function
(Indirect Addressing Fegister's
only) @ddr&ssing only)
™
iDirect and Indirect
Addressing) Lower 128 RAM
> {Direct and Indirect

Addressing)

Addressing Modes

Reqister Addressing — either source or destination
IS one of RO-R7

mov RO, a

mov a, RO

Play with the Reqister Banks

Addressing Modes

Reqister Indirect — the address of the source or
destination is specified In registers

Uses registers RO or R1 for 8-bit address:

mov 0xDO, #0 ; use register bank 0
mov r0, #0x3C
mov @r0, #3 ; memory at 3C gets #3

; M[3C] € 3

Uses DPTR register for 16-bit addresses:
mov dptr, #0x9000 ; dptr € 9000h
mov a, @dptr ; a € M[9000]

Note that 9000 is an address in external memory

access upper RAM block

DATA MEMORY (RAM)

INTEEMNAL DATA ADDRESS SPACE
OXFF 1 Upper 128 RAM Special Function
(Indirect Addressing Fegister's
0x20 only) (Direct Addressing Only)
0x7F ™
iDirect and Indirect
Addressing) Lower 128 RAM
0x30 > {Direct and Indirect
0x2F Addressing)
0x=20
0x1F

0x00

Learn about Include Files

Addressing Modes

e Reqgister Indexed Mode — source or destination
address Is the sum of the base address and the
accumulator.

e Base address can be DPTR or PC
mov dptr, #4000h
mov a, #5

movc a, Qa + dptr ;a € M[4005]

Addressing Modes

e Reqister Indexed Mode

e Base address can be DPTR or PC

Addr
1000
1002

1003

pPC —*

cseg at 0x1000h
mov a, #5
movc a, @a + PC

nop

;a € M[1008]

Table Lookur

A and B Registers
e A and B are “accumulators” for arithmetic
Instructions

e They can be accessed by direct mode as
special function registers:

e B — address OFOh

o A — address OEOh - use “ACC” for direct
mode

Address Modes

Stack-oriented data transfer — another form of
register indirect addressing, but using SP

mov sp, #0x40 ; Initialize SP

push 0x55 ; SP & SP+1, M[SP] €& M[55]
; M[41] € M[55]

pop b ; b € M[55]

Note: can only specify RAM or SFRs (direct mode) to push or
pop. Therefore, to push/pop the accumulator, must use acc,
not a:

e

stack pointer

stack

Go do the stack exercise.....

Address Modes

Exchange Instructions — two way data transfer

XCH a, 0x30 ; a €2 M[30]

XCH a, RO ; a €2 RO

XCH a, @RO ; a €2 M[RO]
XCHD a, RO ; exchange “digit”
al7..411ar3..07 RO[7..4][RO[3..0]]

| Onlx 4 bits exchanged I

Address Modes

e Bit-Oriented Data Transfer — transfers between individual bits.

* SFRs with addresses ending in O or 8 are bit-addressable. (80, 88, 90, 98,
etc)

o Carry flag (C) (bit 7 in the PSW) is used as a single-bit accumulator

e RAM bits in addresses 20-2F are bit addressahle
DATA MEMORY (RAM)
INTERNAL DATA ADDRESS SPACE

OXFF1 " Upper 128 RAM Special Function
{Indirect Addressing Fegister's

0x80 Onily) (Direct Addressing Only)

0x7TF ™

(Direct and Indirect

Addressing) Lower 128 RAM
0=30 > {Direct and Indirect

ﬁ e - o
P

0=20
0x1F

Examples of bit transfers of special function register bits:

mov C, PO0.O ; C € bit 0 of PO

0x00

2F
2E
2D
2C
2B
2A
29
28
27
26
25
24
23
22
21
20

able Memor

7F
1A
10
OF 08
07 |06 |05 [04 |03 |02 |01 |00

20h — 2Fh (16 locations X
8-bits = 128 bits)

Bit addressing:
mov C, 1Ah
or
mov C, 23h.2

OxFF Upper 128 RAM Special Function
{Indirect Addressing Register's
0x80 Only) {Direct Addressing Only)
0x7F ™
{Direct and Indirect
Addressing) Lower 128 RAM
0x30 > iDirect and Indirect

Addressing)

SPRs that are Bit Addressable

SPRs with addresses
of multiples of O and
8 are bit
addressable.

Notice that all 4
parallel 1/O ports are
bit addressable.

SFRs

Pink are
implemented in
enhanced
C8051F020

Address Register
OxF8 SPIOCN
OxFO B
OxE8 ADCOCN
OxEO ACC
0xD8 PCAOCN
0xDO0 PSW
0xC8 T2CON
0xCO SMBOCN
0xB8 IP
0xBO P3
OxA8 IE
0xA0 P2
0x98 SCON
0x90 P1
0x88 TCON
0x80 PO

Go Access the Port Bits....

Part ||
The 8051 Assembly Language

Program Template

Use this template as a starting point for
future programs.

Data Processing Instructions

Arithmetic Instructions
Logic Instructions

Arithmetic Instructions

e Add

e Subtract

e Increment

* Decrement

e Multiply

e Divide

e Decimal adjust

Arithmetic Instructions

Mnemonic Description

ADD A, byte add A to byte, put result in A
ADDC A, byte add with carry

SUBB A, byte subtract with borrow

INC A increment A

INC byte Increment byte in memory

INC DPTR increment data pointer

DEC A decrement accumulator

DEC byte decrement byte

MUL AB multiply accumulator by b register
DIV AB divide accumulator by b register
DA A decimal adjust the accumulator

ADD Instructions

add a, byte ; a € a + byte
addc a, byte ; a € a + byte + C
These instructions affect 3 bits in PSW.

C =1 if result of add is greater than FF

AC = 1 if there Is a carry out of bit 3

OV = 1 if there is a carry out of bit 7, but not from bit 6,
or visa versa.

Program Status Word {(PSW)

Bit b) 4 3 2 1 0
Flag CY AC FO RS1 RS0 ov F1 P
Hame Carry | ouxilizey =zer Fedister | Redister § Owerflo zer Parity
Flag Carry Flag O Bank Bank wy flag Flag 1 Bit
Flagy Select1 | SelectO

Instructions that Affect PSW bits

Instructions that Affect Flag Settings(1)

Instruction Flag Instruction Flag
C OV AC C OV AC

ADD X X X CLRC 0
ADDC X X X CPLC X
SUBE X X X ANL C bit X

MUL 0 X ANL C,/bit X

DIV 0 X ORL C,bit X

DA A ORL C /bit X

RRC A MOV C bit X

RLC X CJNE X
SETB C 1

ADD Examples

e What Is the value of
the C, AC, OV flags
after the second
Instruction Is

mov a, #0x3F
add a, #0xD3

0011 1111 executed?
1101 0011
0001 0010

cC =1

AC = 1

oV = 0

Signed Addition and Overflow

2’'s complement:

0000 0000

0111 1111
1000 0000

1111 1111

00

TF
80

FFE

0

127
-128

0111 1111 (positive 127)
0111 0011 (positive 115)

1111 0010 (overflow
cannot represent 242 in 8
bits 2’s complement)

1000 1111 (negative 113)
1101 0011 (negative 45)

0110 0010 (overflow)

0011 1111 (positive)
1101 0011 (negative)

0001 0010 (never overflows)

/

e
Addition Example

; Computes Z =X +Y; Adds values at locations 0x78 and 0x79 and puts them in
location Ox7A

$INCLUDE (C8051F020.inc)

; EQUATES

X equ Ox78
Y equ 0x79
Z equ OX7A

cseg at O
ljmp Main
; CODE SEGMENT
cseg at 100h
Main: mov OxFF, #0DEh ; Disable watchdog timer
mov OxFF, #0ADh
mov a, X
add a, Y
mov Z, a

nop
K end

The 16-bit ADD example.....

Subtract

SUBB A, byte subtract with borrow

Example:

SUBB A, #0x4F; A € A — 4F - C

Notice that there is no subtraction WITHOUT borrow. Therefore, if
a subtraction without borrow is desired, it is necessary to clear the C
flag.

Increment and Decrement

INC A increment A

INC byte Increment byte in memory
INC DPTR increment data pointer
DEC A decrement accumulator
DEC byte decrement byte

e The Increment and decrement instructions do
NOT affect the C flag.

* Notice we can only INCREMENT the data
pointer, not decrement.

Example: Increment 16-bit Word
e Assume 16-bit word in R3:R2

mov a, r2

add a, #1 : use add rather than increment to affect C
mov r2, a

mov a, r3

addc a, #0 ; add C to most significant byte

mov r3, a

Multiply

When multiplying two 8-bit numbers, the size of the
maximum product is 16-bits

FF x FF = FEO1
(255 x 255 = 65025)

MUL AB : BA &€ A * B

Note: B gets the HIGH byte, A gets the LOW byte

Go forth and multiply...

Division
Integer Division
DIV AB ; divide A by B

A € Quotient(A/B), B € Remainder (A/B)

OV - used to indicate a divide by zero condition.
C — set to zero

Decimal Adjust

DA a ; decimal adjust a

Used to facilitate BCD addition. Adds “6” to either high or
low nibble after an addition to create a valid BCD
number.

Example:

mov a, #0x23
mov b, #0x29
add a, b ; a € 23 + 29 = 4C (wanted 52)

DA a ; a € a + 6 = 52

Note: This instruction does NOT convert binary to BCD!

Logic Instructions

ear
Rotate
Swap

Logic instructions do NOT affect the flags in PSW

Bitwise Logic

ANL — AND

ORL - OR

XRL — eXclusive OR
CPL — Complement

Examples:

ANL

ORL

XRL

CPL

00001111
10101100
00001100

00001111
10101100
10101111

00001111

10101100
10100011

10101100

01010011

Address Modes with Logic

ANL — AND a, byte
ORL -OR direct, req. indirect, reg, immediate
XRL —eXclusive oR

bxte, a

direct

byte, #constant

CPL — Complement a ex: cpla

Uses of Logic Instructions

e Force individual bits low, without affecting other
bits.
anl PSW, #0xE7 ;PSW AND 11100111

anl PSW, #11100111b ; can use “binary”

e Force individual bits high.
orl PSW, #0x18 ; PSW OR 00011000

e Complement individual bits
xrl P1, #0x40 ;P1 XRL 01000000

A bit part for you....

Other Logic Instructions

e CLR - clear

e RL — rotate left

e RLC — rotate left through Carry

* RR - rotate right

e RRC - rotate right through Carry

» SWAP — swap accumulator nibbles

CLR — Set all bitsto O

CLRA

CLR byte (direct mode)

CLR RI (register mode)

CLR @RI (register indirect mode)

Rotate

* Rotate instructions operate only on d

rl a

mov a, #0xF0 ; a€< 11110000
rl a ; a€ 11100001

Rotate through Carry

rrc a R C

mov a, #0A9h ; a € A9
add a, #14h ; a € BD (10111101), C<O0

rrc a ; a € 01011110, c<1

Swap

swap a

mov a,

swap a

#72h
; a € 27h

Bit Logic Operations

Some logic operations can be used with single
bit operands

ANL C, bit ANL C, /bit

ORL C, bit ORL C, /bit

CLR C

CLR bit

CPL € “bit” can be any of the bit-addressable RAM
CPL bit locations or SFRs.

SETB C

SETB bit

Rotate and Multiplication/Division

e Note that a shift left is the same as multiplying by
2, shift right is divide by 2

mov
clr
rlc
rlc

rrc

a, #3
C

a
a
a

; AC
; C&
; AC
; AC
; AC

00000011 (3)
0

00000110 (o)
00001100 (12)
00000110 (o)

Shift/Multiply Example

e Program segment to multiply by 2 and add 1

clr c
rl a ymultiply by 2

inc a rand add one

Logical Operations Exercise — Part 2

Program Flow Control

 Unconditional jumps (“go t0”)
e Conditional jumps
e Call and return

Unconditional Jumps

e SOJMP <rel addr> ; Short jump, relative

address is 8-bit 2’'s complement number, so jump can
be up to 127 locations forward, or 128 locations back.

e LUMP <address 16> ; Longjump

e AOMP <address 11> ; Absolute jump to
anywhere within 2K block of program memory

e JMP @A + DPTR ; Long indexed jump

Infinite Loops

Start: mov C, p3.7
mov pl.6, C
sjmp Start

Microcontroller application programs are almost always infinite loops!

Re-locatable Code

end

Memory specific (NOT Re-locatable)

cseg at 8000h
mov C, pl.o6
mov p3.7, C
1imp 8000h

Start:

end

Re-locatable

cseg at 8000h
mov C, pl.o6
mov p3.7, C
sjmp Start

Conditional Jumps

These instructions cause a jump to occur only if a
condition is true. Otherwise, program execution
continues with the next instruction.

loop: mov a, Pl

Jz loop ; 1f a=0, goto loop,
; else goto next
; lnstruction

mov b, a

Conditional jJumps

Mnemonic Description

JZ <rel addr> Jumpifa=0

JNZ <rel addr> Jumopifal=0

JC <rel addr> JumpifC =1

JNC <rel addr> Jumpif C =1

JB <bit>, <rel addr> |Jumpifbit=1

JNB <bit>,<rel addr> Jump ifbit!'=1

JBC <bit>, <rel addr> |Jump if bit =1, clear bit

CIJNE A, direct, <rel
addr>

Compare A and memory,
jump If not equal

Conditional Jumps for Branching

goto label | false
else true
goto next label
mstroction
Jjz led off
] A setb C
Ifa=0Iistrue mov P1.6, C
sendaOto LED syjmp skipover

else led off: clr C
mov Pl.6, C

sendaltoLED skipover: mov A, PO

More Conditional Jumps

Mnemonic

Description

CJIJNE A, #data <rel addr>

Compare A and data, jump if
not equal

CJIJNE Rn, #data <rel addr>

Compare Rn and data, jump if
not equal

CJIJNE @Rn, #data <rel addr>

Compare Rn and memory,
jump if not equal

DIJNZ Rn, <rel addr>

Decrement Rn and then jump
If not zero

DJIJNZ direct, <rel addr>

Decrement memory and then
jump if not zero

lterative Loops

ForA=0to4do
{...}

clr a
loop: ...
inc a

cjne a, #4, loop

ForA=41to0do
{...}

mov RO, #4
loop: ...

dijnz RO, loop

Branch and Jumg
Fun with the LED

Call and Return

e Call is similar to a jump, but
e Call instruction pushes PC on stack before branching
e Allows RETURN back to main program

Absolute call
acall <address 11> ; stack € PC

; PC € address 11
Long call

lcall <address 16> ; stack €& PC
; PC € address 16

Return

e Return is also similar to a jump, but

e Return instruction pops PC from stack to get
address to jump to

ret ;: PC €& stack

Subroutines

call to the subroutine

Main: y//
acall sublabe

<

| |
T —)

e the subroutine
ret

Initializing Stack Pointer

e The Stack Pointer (SP) is initialized to 0x07. (Same
address as R7)

 When using subroutines, the stack will be used to
store the PC, so it is very important to initialize the
stack pointer. Location 2F is often used.

mov SP, #0x2F

Subroutine - Example

Sinclude (c8051£f020.1inc)
GREEN LED equ P1.6
cseg at 0 } reset vector
ljmp Main
cseg at 0x100 ~
Main: mov WDTCN, #O0DEh

mov WDTCN, #0ADh
orl P1MDOUT, #40h

mov XBR2, #40h
clr GREEN LED

> main program

Again: acall Delay

~
cpl GREEN LED
. , ™
sjmp Agailn
Delay: mov R7, #02
Loopl : mov ~ R6, #00h > subroutine
Loop0: mov R5, #00h
djnz R5, S
-

djnz R6, LoopO
djnz R7, Loopl
ret

END

Subroutine — another example

; Program to compute square root of value on Port 3 (bits 3-0) and

; output
SINCLUDE

Main:

loop:

sgrt:

squares:

on Port 1.
(C8051F020.1inc)
cseg at O

ljmp Main

mov P3MDOUT, #0
mov P3, #0xFF
mov P1MDOUT, #O0OxFF
mov XBR2, #40h
mov a, P3

anl a, #0xOF
lcall sgrt

mov Pl, a

sjmp loop

inc a

movc a, @a + PC

ret

} reset vector
\

; Set open-drain mode
; Port 3 is an input

; Port 1 is an output

; Enable crossbar > main program

; Clear bits 7..4 of A

<

. subroutine

} data

d 0,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3

end

Why Subroutines?

e Subroutines allow us to have "structured"
assembly language programs.

e This is useful for breaking a large design into
manageable parts.

e |t saves code space when subroutines can be
called many times in the same program.

Timeout for Subroutines....

uo1ndax3 weibold

Interrupts

mov a, #2
mov b, #16
mul ab
mov RO, a
mov R1, Db
mov a, #12
mov b, #20
mul ab

add a, RO
mov RO, a
mov a, R1
addc a, b
mov R1, a

4 end

Interrupt

» [SR:

here:

return

orl PIMDIN, #40h

orl P1MDOUT, #40h
setb P1.6

sjmp here

cpl P1l.6

reti

Interrupt Sources

e Original 8051 has 5 sources of interrupts
e Timer 1 overflow
e Timer 2 overflow
e External Interrupt O
e External Interrupt 1

e Serial Port events (buffer full, buffer empty, etc)

e Enhanced version has 22 sources

e More timers, programmable counter array, ADC,
more external interrupts, another serial port (UART)

Interrupt Process

If interrupt event occurs AND interrupt flag for
that event is enabled, AND interrupts are
enabled, then:

1. Current PC is pushed on stack.

2. Program execution continues at the
Interrupt vector address for that interrupt.

3. When a RETI instruction is encountered,
the PC is popped from the stack and
program execution resumes where it left off.

Interrupt Priorities

e What if two interrupt sources interrupt at the same
time?

e The interrupt with the highest PRIORITY gets
serviced first.

o All interrupts have a default priority order. (see
page 117 of datasheet)

e Priority can also be set to “high” or “low”.

Interrupt SFRs

Figure 12.9. IE: Interrupt Enable

RW EW RW W BW RW RW EW Feset Value
EA IEGFO ET2 ES0 ET1 EX1 ETO EX0 00000000
But7 Bt Bit3 Birt4 Bat3 Bt Butl Batl SFE. Address

(bat addressable) (OxAS

N _/
Y

Interrupt enables for the 5 original 8051 interrupts:

Timer 2
Serial (UARTDO)
Timer 1
Global Interrupt Enable — External 1
must be set to 1 for any Timer 0
interrupt to be enabled 1 =Enable External 0

0 = Disable

Another Interrupt SFR

Figure 12.11. EIE]l: Extended Interrupt Enable 1

R'W EW RW W W BW W EW Reset Value
ECPIE ECPIF ECPOE ECPOF EPCAD | EWADCO | ESMEOD ESPID Q0000000
Bit7 But But3 Bit4 Bat3 B2 Butl Batl) SFE Address
T A A T A 4 OxE6
Comparator|1 rising gdge Program Courjter Array
Comparator 1 falling edge ADCO0 Window Qomparisqn
Comparator Ofrising edge System Maphagement Bus

Comparator 0 falling edge SPI Interface

Another Interrupt SFR

Figure 12.12. EIE2: Extended Interrupt Enable 2

RW B RAW EW ESW W B EAW F.ezet Value
EXVLD ES1 EX7 EX6 EADCI ET4 EADCO ET3 QOO00000
Bt Bas Bit5 Ba4 Baz3 Bit2 Batl Bzl SFE. Address:
1 A A 1 A A 0xE7
External ADC 1
Clock _ _
source oerial Timer 4
valid (UART) 1 ADC 0
External 7

External 6 Timer 3

External Interrupts

e /INTO (Interrupt O) and /INT1 (Interrupt 1) are
external input pins.

e Interrupt 6 and Interrupt 7 use Port 3 pins 6 and
!
INT 6 = P3.6
INT 7 = P3.7

These Iinterrupts can be configured to be
e rising edge-triggered
e falling edge-triggered

External Interrupts

Figure 17.19. P3IF: Port3 Interrupt Flag Register

B RW E E RW BW W RW Fieset Value
IE7 IEa - - IETCFE [EGCF - - 00000000
Bu7 Bt Bt Butd Bt Bai? Batl Bt SFE Address:
K / K / OxAD
Y Y

Interrupt flags: Interrupt Edge Configuration:

0 = no falling edges 0 = interrupt on falling edge

detected since bit cleared
1 = interrupt on rising edge

1 = falling edge detected

Example Configuration

Configure Port 3, bit 7 (the pushbutton switch) to
Interrupt when it goes low.

anl P3MDOUT,

setb P3.7

mov

mov

mowv

mowv

XBR2,
P3IF,
EIE2,
IE

#40h
#0
#020h
#80h

#O0xTF

.
14

Set P3.7 to be an 1nput

Enable crossbar switch
Interrupt on falling edge
Enable EX'7 interrupt
Enable global 1nterrupts

Interrupt Vectors

Each interrupt has a specific place in code memory
(a vector) where program execution (interrupt
service routine) begins (pl17).

Examples:
External Interrupt 0: 0x0003
Timer O overflow: 0x000B
External Interrupt 6. 0x0093
Note that there are

External Interrupt 7: OX009B only 8 memory
locations between
vectors.

Interrupt Vectors

To avoid overlapping Interrupt Service routines, it
IS common to put JUMP instructions at the
vector address. This Is similar to the reset
vector.

cseg at 009B ; at EX7 wvector
1jmp EX7ISR
cseg at 0x100 ; at Main program
Main: ... ; Main program
EX7ISR:... ; Interrupt service routine

; Can go after main program

reti ; and subroutines.

e

Example Interrupt Service
Routine

;, EX7 ISR to blink the LED 5 times.
; Modifies RO, R5-R7, bank 3.

ISRBLK: push PSW

LoopZ:
Loopl:
LoopO0:

mov PSW, #18h
mov RO, #10
mov R7, #02h
mov R6, #00h
mov R5, #00h
djnz R5, S
djnz R6, LoopO
djnz R7, Loopl
cpl P1.6

djnz RO, LoopZ2
pop PSW

mov P3IF, #0
reti

; save state of status word
; select register bank 3

; 1lnitialize counter

; delay a while

; complement LED wvalue
; go on then off 10 times

; clear interrupt flag

Key Thinks for ISRs

e Put the ISR vector in the proper space using a
CSEG assembler directive and long jump

e Save any registers/locations that you use Iin the
routine (the stack is useful here)

e Clear the interrupt flag (unless it is cleared by
hardware)

e Don’t forget to restore any saved
registers/locations and to put the RETI at the end!

rogramming.

